Advanced Topics in Statistical Process Control

The Power of Shewhart’s Charts

Second Edition

Donald J. Wheeler

SPC Press
Knoxville, Tennessee
Contents

Preface to the Second Edition viii
Preface ix
The Shewhart Catechism x

Chapter One Shewhart’s Control Charts 1
1.1 Shewhart’s Definition of Statistical Control 2
1.2 Shewhart’s “Operation of Statistical Control” 4
1.3 The Four Possibilities for Any Process 6
1.4 Process Behavior Charts and the Probability Approach 14
1.5 Enumerative Studies and Analytic Studies 18
1.6 The Uses of Shewhart’s Charts 19
1.7 The Four Foundations of Shewhart’s Charts 21
1.8 Process Behavior Charts and Chaos Theory 25
1.9 The Transformation of Data 28

Chapter Two Statistics Versus Parameters 31
2.1 Measures of Location and Dispersion 31
2.2 The Notion of a Probability Distribution 33
2.3 Statistics, Parameters, and Process Behavior Chart Limits 37
2.4 Skewness and Kurtosis 46

Chapter Three Estimating Dispersion Parameters 55
3.1 Estimators of $SD(X)$ and $V(X)$ for One Subgroup of Size n 56
3.2 Three Ways to Estimate $SD(X)$ for k Subgroups of Size n 60
3.3 The Second Foundation of Shewhart’s Charts 71
3.4 Within-Subgroup Estimates of Dispersion 74
3.5 Time Series Data (Subgroups of Size One) 79
3.6 Degrees of Freedom 80
3.7 Summary 83

Chapter Four Process Behavior Charts for Measurements 85
4.1 Average and Range Charts 88
4.2 Average and Root Mean Square Deviation Charts 92
4.3 Average and Standard Deviation Charts 96
4.4 Average and Variance Charts 103
4.5 So What’s the Difference? 106
4.6 Charts for Individual Values 108
4.7 Median and Range Charts 113
Contents

Chapter Five Three Sigma Limits 115
5.1 Why Three-Sigma Limits? 116
5.2 But What About the Central Limit Theorem? 120
5.3 The Recalculation of Limits 122
5.4 The Role of the Normal Distribution 123
5.5 Calculating Limits With Small Amounts of Data 126
5.6 Inadequate Measurement Units 128
5.7 Detecting Assignable Causes 135
5.8 Summary 140

Chapter Six Rational Sampling and Rational Subgrouping 141
6.1 Rational Sampling 142
6.2 Rational Subgrouping 143
6.3 Principles for Subgrouping 155
6.4 Three-Way Charts 157
6.5 Summary 165

Chapter Seven The Quality of the Limits 167
7.1 The Distribution of the Average Range Statistic 168
7.2 The Distribution of the Average Root Mean Square Statistic 170
7.3 The Distribution of the Average Standard Deviation Statistic 172
7.4 The Distribution of the Pooled Variance Statistic 174
7.5 The Distribution of the Median Range Statistic 176
7.6 The Distribution of the Average Moving Range 178
7.7 Degrees of Freedom 180
7.8 Effective Degrees of Freedom 182
7.9 Using Degrees of Freedom 183
7.10 The Quality of Process Behavior Chart Limits 185
7.11 Summary 186

Chapter Eight Capability Confusion 187
8.1 Capability, Capability Ratios, and Performance Ratios 188
8.2 The Capability of a Predictable Process 188
8.3 Capability Measures 191
8.4 Converting Capabilities Into Fraction Nonconforming 194
8.5 Performance Ratios 197
8.6 World-Class Quality 197
8.7 Summary 204

Chapter Nine Power Functions for Process Behavior Charts 205
9.1 The Power of Charts for Location 206
9.2 The Formulas for the Power Functions 212
9.3 The Average Run Length for a Procedure 221
9.4 Summary 224
Contents

Chapter Ten Comparing Different Types of Process Behavior Charts 225
10.1 Process Behavior Charts for Subgroup Averages 227
10.2 Charts for Moving Averages 237
10.3 Moving Averages or Individual Values? 239
10.4 *Contra* Two-Sigma Limits 245
10.5 Summary 250

Chapter Eleven Charts for Count Data 251
11.1 Charts for Count Data 252
11.2 np-Charts 255
11.3 p-Charts 256
11.4 A Problem With Binomial Counts 257
11.5 c-Charts 259
11.6 u-Charts 261
11.7 A Problem With Poisson Counts 262
11.8 Degrees of Freedom 267
11.9 Process Behavior Charts for Rare Events 267
11.10 Summary 271

Chapter Twelve Charts for Autocorrelated Data 273
12.1 Correlation 273
12.2 Significant Correlations 275
12.3 Autocorrelation 276
12.4 What Does Autocorrelation Say About the Process? 278
12.5 The Effect of Autocorrelation 279
12.6 Autocorrelation’s Effect Upon Chart Limits 282
12.7 So What Shall I Do With My Autocorrelated Data? 287

Chapter Thirteen The Cumulative Sum Technique 289
13.1 Cumulative Sums for Individual Values 290
13.2 Cumulative Sums for Subgroup Averages 299
13.3 Average Run Lengths for Selected Cusum Procedures 307
13.4 Summary 311

Chapter Fourteen Exponentially Weighted Moving Averages 313
14.1 The EWMA Algorithm 313
14.2 EWMA for Individual Values 315
14.3 Average Run Lengths for the EWMA 320
14.4 Then What Does an EWMA Do? 323
14.5 Summary 327
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fifteen</td>
<td>Multivariate Charts</td>
<td>329</td>
</tr>
<tr>
<td>15.1</td>
<td>Simple Multivariate Charts</td>
<td>329</td>
</tr>
<tr>
<td>15.2</td>
<td>Charts for Hotelling's T^2 Statistic</td>
<td>334</td>
</tr>
<tr>
<td>Sixteen</td>
<td>Miscellaneous Techniques</td>
<td>341</td>
</tr>
<tr>
<td>16.1</td>
<td>Zone Charts</td>
<td>341</td>
</tr>
<tr>
<td>16.2</td>
<td>Modified Control Charts</td>
<td>346</td>
</tr>
<tr>
<td>16.3</td>
<td>PreControl</td>
<td>347</td>
</tr>
<tr>
<td>16.4</td>
<td>Summary</td>
<td>354</td>
</tr>
<tr>
<td>Seventeen</td>
<td>The Characterization of Product</td>
<td>355</td>
</tr>
<tr>
<td>17.1</td>
<td>Characterizing the Measured Item</td>
<td>356</td>
</tr>
<tr>
<td>17.2</td>
<td>Characterizing Product Which Has Not Been Measured</td>
<td>366</td>
</tr>
<tr>
<td>17.3</td>
<td>The Fallacy of Acceptance Sampling</td>
<td>368</td>
</tr>
<tr>
<td>17.4</td>
<td>Estimating the Fraction Nonconforming</td>
<td>369</td>
</tr>
<tr>
<td>17.5</td>
<td>Summary</td>
<td>371</td>
</tr>
<tr>
<td>Eighteen</td>
<td>The Analysis of Means</td>
<td>373</td>
</tr>
<tr>
<td>18.1</td>
<td>Comparing k Treatments Using Average Charts</td>
<td>374</td>
</tr>
<tr>
<td>18.2</td>
<td>Experimental Data vs. Production Data</td>
<td>375</td>
</tr>
<tr>
<td>18.3</td>
<td>The Decision Limits for ANOM</td>
<td>379</td>
</tr>
<tr>
<td>18.4</td>
<td>The Role of the Range Chart with ANOM</td>
<td>382</td>
</tr>
<tr>
<td>18.5</td>
<td>ANOM With Multifactor Studies</td>
<td>386</td>
</tr>
<tr>
<td>18.6</td>
<td>Interaction Effects and ANOM</td>
<td>388</td>
</tr>
<tr>
<td>18.7</td>
<td>ANOM With Unequal Subgroup Sizes</td>
<td>390</td>
</tr>
<tr>
<td>18.8</td>
<td>The Analysis of Mean Ranges</td>
<td>392</td>
</tr>
<tr>
<td>18.9</td>
<td>Range-Based Analysis of Means</td>
<td>395</td>
</tr>
<tr>
<td>18.10</td>
<td>Summary</td>
<td>397</td>
</tr>
<tr>
<td>Nineteen</td>
<td>Some Differences Between Theory and Practice</td>
<td>399</td>
</tr>
<tr>
<td>19.1</td>
<td>The Scientific Process</td>
<td>400</td>
</tr>
<tr>
<td>19.2</td>
<td>Statistical Tests of Hypotheses</td>
<td>402</td>
</tr>
<tr>
<td>19.3</td>
<td>Enumerative Studies</td>
<td>404</td>
</tr>
<tr>
<td>19.4</td>
<td>Analytical Studies</td>
<td>406</td>
</tr>
<tr>
<td>19.5</td>
<td>Shewhart on Probability Models and Processes</td>
<td>407</td>
</tr>
<tr>
<td>19.6</td>
<td>Finding Decision Rules for Analytic Studies</td>
<td>408</td>
</tr>
<tr>
<td>19.7</td>
<td>Conclusions</td>
<td>409</td>
</tr>
</tbody>
</table>
Contents

Appendix

Glossary of Symbols 412
Bibliography 414
Tables 416-464

Table 1: Bias Correction Factors 416
Table 2: Bias Correction Factors for Estimating \(V(X) \) 417
Table 3: Charts for Individual Values and Moving Ranges 418
Table 4: Average and Range Charts Using the Average Range 419
Table 5: Average and Range Charts Using the Median Range 420
Table 6: Average and Range Charts Based on \(\Sigma(X) \) 421
Table 7: Average and RMS Dev. Charts Using Average RMS Dev. 422
Table 8: Average and RMS Dev. Charts Using Median RMS Dev. 423
Table 9: Average and RMS Dev. Charts Based on \(\Sigma(X) \) 424
Table 10: Average and Std. Dev. Charts Using Average Std. Dev. 425
Table 11: Average and Std. Dev. Charts Using Median Std. Dev. 426
Table 12: Average and Std. Dev. Charts Based on \(\Sigma(X) \) 427
Table 13: Average and Std. Dev. Charts Using Pooled Variance 428
Table 14: Median and Range Charts Using the Average Range 430
Table 15: Median and Range Charts Using the Median Range 431
Table 16: Median and Range Charts Based on \(\Sigma(X) \) 432
Table 17: Average and Variance Charts 433
Table 18: Moments for Range Distributions 434
Table 19: Moments for Distributions of the RMS Deviation 436
Table 20: Moments for Distributions of the Standard Deviation 438
Table 21: Degrees of Freedom for Average Ranges 442
Table 22: Degrees of Freedom for Median Ranges 444
Table 23: Degrees of Freedom for Average Moving Ranges 446
Table 24: Degrees of Freedom for Median Moving Ranges 447
Table 25: Degrees of Freedom for Average Std. Dev. and RMS Dev. 448
Table 26: Degrees of Freedom for Median Std. Dev. and RMS Dev. 450
Table 27: The Standard Normal Distribution 452
Table 28: ANOM Critical Values, \(H \) 454
Table 29: Range-Based ANOM Critical Values 458
Table 30: Range-Based ANOME Critical Values 459
Table 31: Range-Based ANOMR Critical Values 460
Table 32: Central Lines and Upper Limits for Hotelling’s \(T^2 \) 462
Table 33: 37 Reference Tables and Figures Located Within Text 463
Table 34: Alpha Levels for Average Charts 464

Index 465
The Shewhart Catechism

1. *What if a state of predictability is beyond the capability of our process?*
 This cannot happen. A process is operating predictably when it is being operated as consistently as it can—no more, and no less. See Sections 1.1, 1.2

2. *Is quality defined by conformance to specifications?*
 No. Today world-class quality is defined as “on-target with minimum variance.” Conformance to specifications is merely the starting point, not the finish line. See Section 8.6

3. *What do capability ratios do?*
 Capability ratios may be used to compare the Voice of the Process with the Voice of the Customer. However, it is easy to go overboard with this. Some other measures are also useful, and no numerical summary is an adequate replacement for the basic graphs of the data. See Section 8.3

4. *How do Dr. Deming’s 14 Points relate to Statistical Process Control?*
 They may be thought of as corollaries to the observation that organizations do not behave in a rational manner and therefore cannot effectively use the knowledge gained from the charts. See Section 1.6

5. *How do Shewhart’s process behavior charts differ from tests of hypotheses?*
 Shewhart’s charts characterize a time series as being either predictable or unpredictable. When a test of hypotheses is applied to a time series it presumes the time-series to be predictable, and looks for changes in parameters of the predictable time-series. See Sections 1.3 through 1.5 and Chapter 19

6. *Does it matter how we calculate the limits of a process behavior chart?*
 Yes. There are right and wrong ways of computing limits. While all of the right ways will yield essentially the same limits, the wrong ways will result in incorrect limits and faulty decisions. See Section 3.2

7. *Do we have to remove the “outliers” from the data before we calculate the limits?*
 No. The correct computational procedures for process behavior chart limits are not severely affected by outliers. See Sections 3.2 and 4.1

8. *Must the data “be in control” prior to placing them on a process behavior chart?*
 No. One purpose of a process behavior chart is to detect the presence or absence of a state of predictability. Therefore, you do not have to wait for “pristine” data, nor do you have to clean up the data prior to computing the limits. See Section 3.2 and Chapter 4
9. How can we calculate good limits from data which are “out of control?”
 The correct approaches to computing limits will minimize the impact of exceptional
 variation upon the limits. See Chapter 4

10. Should we calculate limits for the Average Chart when the Range Chart is unpredictable?
 Yes. You will not discover anything by not calculating limits!
 See Sections 4.1 and 5.4

11. Can we use two-sigma limits?
 No. Two-sigma limits are inappropriate for a process behavior chart. See Section 10.4

12. Do three-sigma limits depend upon having normally distributed data?
 No. Three-sigma limits are sufficiently general to work with virtually any distribution.
 See Sections 5.1 and 5.2

13. Are the process behavior chart constants dependent upon having normally distributed data?
 No. These constants are remarkably similar for a wide range of different distributions.
 See Section 5.4

14. Do we have to wait until we have 25 or 30 subgroups before calculating limits?
 No. Limits may be calculated using small amounts of data. The degrees of freedom
 will characterize just how “reliable” the calculated limits have become.
 See Sections 3.6, 5.4, and 7.9

15. What about data which display autocorrelation?
 Shewhart placed autocorrelated data on charts. You can too. See Chapter 12

16. Do we have to use subgroups of size 5?
 No. The subgroup size is not the most important characteristic of the chart. Rational
 subgrouping is more important than the subgroup size, even if that requires sub-
 groups of size one. See Sections 1.6, 10.1, and Chapter 6

17. What is a rational subgrouping?
 Among other things, a rational subgrouping is one in which the measurements inside
 each subgroup are judged to have been obtained under essentially the same
 conditions. Moreover, the subgrouping must respect the structure of the data.
 See Section 1.2 and Chapter 6

18. Does the Central Limit Theorem require charts to use subgroups of size 4 or 5?
 While the Central Limit Theorem is true, it is not the basis on which the process
 behavior chart is built. Therefore, this theorem cannot require anything of a process
 behavior chart. The charts will work with subgroups of size 1, and they will do so
 even when the data are not normally distributed. See Sections 5.2, 10.1, and 10.3
19. Does a subgroup always consist of consecutive measurements?
No. While many processes may be tracked using subgroups of consecutive measurements, this is not a requirement of the chart. Once again, it is more important that the subgrouping be rational.
See Section 1.6 and Chapter 6

20. What happens to a process behavior chart when the measurement units are too large to detect the variation in the data?
False alarms will proliferate. This problem is easy to spot, but it must be considered if you are to avoid looking for nonexistent assignable causes.
See Section 5.5

21. Why do we use so many symbols for dispersion?
There is a multiplicity of dispersion statistics as well as a plurality of dispersion parameters. A lack of a standard nomenclature here is a real source of confusion.
See Sections 3.1 through 3.4

22. Is the standard deviation statistic better than the range?
Not for small subgroup sizes. See Sections 4.1, 4.3, and Appendix Tables 18, 19, and 20

23. Is not the Pooled Variance a better measure of dispersion than the Average Standard Deviation or the Average Range?
Yes and No. The Pooled Variance will have more degrees of freedom than the other measures, but it will be more severely affected by a lack of homogeneity than will the other measures.
See Sections 3.4 and 7.7

24. What are Degrees of Freedom?
Degrees of Freedom is the name given to a characterization of the variation of a measure of dispersion. The greater the Degrees of Freedom, the smaller the variation of the measure of dispersion.
See Sections 3.6, 7.7, 7.8, and 7.9

25. How do we measure dispersion when our subgroup size is one?
We must use a two-point moving range to measure dispersion when placing a time series of individual values on a process behavior chart.
See Sections 3.5 and 4.6

26. What role does the Moving Range Chart play with an Individual Value Chart?
It signals that the user knows the correct way of computing limits, it identifies breaks in the original time series, and it provides those who look at the chart with the ability to easily check that the computation of the limits is correct.
See Section 4.6

27. Are “unbiased” estimators better than “biased” estimators?
No. The property of being unbiased does not imply closeness to the parameter.
See Section 3.1

28. Should I be using the skewness and kurtosis values from my printout?
No. You will never have enough data to make these “shape statistics” useful.
See Section 2.4
29. **Will Chaos Theory replace process behavior charts?**
 No. Since Dr. Shewhart’s approach is holistic and empirical, it can accommodate the paradigm shift represented by the new theories of quasi-chaotic variation.
 See Section 1.7

30. **What about transforming the data prior to placing them on a chart?**
 Transformations to achieve a quasi-normal histogram or transformations to achieve other statistical properties are not recommended. They introduce more complexity than they are worth. Transformations to achieve *clarity of interpretation* are always appropriate.
 See Sections 1.8, 6.1, 11.9, and Chapter 19

31. **Is a Moving Average Chart better than a chart for Individual Values?**
 Only occasionally. Most times the Individual Value Chart will be the better chart.
 See Section 10.3

32. **What is the difference between Attribute Charts and XmR Charts?**
 XmR Charts use empirical limits while Attribute Charts use theory to construct limits. Therefore, with Attribute Charts you must check to see if the theory is appropriate.
 See Chapter 11

33. **How can we chart rare events?**
 Counts of rare events will result in weak charts. It is better to measure the area of opportunity between the rare events and use these measurements on the charts.
 See Section 11.9

34. **Is it true that the Cumulative Sum (Cusum) is better than a process behavior chart?**
 No. The Cusum technique may be easier to program than a process behavior chart, but contrary to much of what has been written, it does not really work any better than process behavior charts. Moreover, by transforming the original data, the Cusum technique can actually obscure that which is easily seen in the running records of the process behavior charts.
 See Chapter 13

35. **Can we use an Exponentially Weighted Moving Average instead of a process behavior chart?**
 An EWMA attempts to model a time series. Such models may be used for process monitoring. However, EWMAs are no more sensitive than a process behavior chart, they will always lag behind a chart, and they are more complex than a chart.
 See Chapter 14

36. **Can we use PreControl instead of a process behavior chart?**
 No. PreControl is totally different from a process behavior chart, and inferior as well.
 See Section 16.3

37. **Are Zone Charts a valid alternative to a process behavior chart?**
 No. Zone charts result in too many false alarms. In addition, they are actually more complex than a process behavior chart, while providing nothing more than a parody of the process behavior chart.
 See Section 16.1